Skip to end of metadata
Go to start of metadata

According to a study done at NASA's national jet propulsion laboratory, bacteria found on the International Space Station (ISS) have been found to be resistant to multiple antibiotics tested against them. Inevitably, where there are humans, there are bacteria, even up in space. Continuing research done prior, scientists at the NASA lab identified a strain of Enterobacter bugandensis, that was resistant to all nine antibiotics tested against them. The scientists compared the genetics of the ISS strains to three strains of E. bugandensis collected back on Earth that were found to be pathogenic. The ISS strains were similar in many ways to strains found on Earth, including genes associated with antimicrobial resistance and potential virulence . Based on the genetic findings, it is estimated that the ISS strains were around 79 percent likely to be pathogenic and cause disease. Although the astronauts have not been sickened because of the bacteria, the news will certainly impact the planning of future missions. E. Bugandensis is a common bacteria that can cause disease on people with weakened immune systems and can even cause sepsis. Given the limited medical support on the ISS, this is something else to take into consideration.

I find the genetic connections to this case very interesting. How exactly do the strains differ genetically? How does space play a factor in the genetics? How will this effect future planning? Bacteria in space have been know to exist, especially coming from humans on the ISS. Even with no known diseases caused as of yet, the emergence of antibiotic resistance would make the treatment of any bacterial infections caught much more difficult. If an astronaut would get sepsis, they would need to be sent back to Earth, but that would be a very dangerous option. More investigation is definitely needed to look into the danger posed. But another interesting though posed earlier is how these strains compare to those on Earth. I wonder which astronauts brought the specific strains up, and what their history of antibiotic use is. Additionally, what is the capability to treat an infection in house on the ISS, and has antibiotic use their contributed to the problem. Certainly isolation from Earth for some time would limit the amount of antibiotic exposure they had, but there has been interesting research in the last few years on evolutionary pressures creating resistance in bacteria. Would space have an effect on this?


  • No labels