Skip to end of metadata
Go to start of metadata

How do wrinkles on a microscopic worm, a transparent nematode found in the soil, provide a longer and healthier life for humans? Scientists found that nematodes, even though they are very small animals, share very similar genetics with larger mammals, including humans. Because of this, properties that nematodes have may be tested to see if they are the same in humans and in this case possibly provide information for human health. The specific property looked at in this article was a worm's cuticle and how it compared to a human's skin. The cuticle, the same as human skin, is the protectant layer and first line of defense against pathogens. When nematodes get infected, their cuticle changes shape to protect it and further defend it from other pathogens. This response is controlled by the nervous system. Many pathogens produce wicked proteins that try to destroy the barrier and cause an infection and according to research, the nervous system can detect these attacks and respond by strengthening the protective structure. The team of researchers found that the gene called nrp-8 regulates collagens, which are proteins that are the key structural components of the nematode's cuticle. They also tested what happened when the npr-8 protein was removed, and the cuticle was smooth and survived longer when exposed to pathogens as opposed to the wild ones that shriveled up. Gene technology shows that the nrp-8 receptor negatively regulates defense against pathogenic infections and inhibits the expression of the collagen in the cuticle. Collagen is the most abundant protein found in mammals and declining collagen levels are associated with aging, but for humans, it can create more problems than just wrinkles. Collagen plays an important role in defense of infection and pathogen prevention and researchers suggest that because a nematode's nervous system controls their cuticle response, neural regulation in humans may provide more of a defense and overall improve longevity. 


https://www.sciencedaily.com/releases/2019/11/191120144950.htm

  • No labels