Queues and Policies

Nodes on Argon are separated into 3 types of queues:

- **Investor queues**: nodes purchased by investors. Access to these queues is managed by the investors and their delegates.
- **UI queues**: centrally funded nodes which are available to everyone who has an HPC account.
- **all.q queue**: cluster wide queue

Investor Queues

To request access to an investor queue, please contact the queue manager listed below.

<table>
<thead>
<tr>
<th>Queue</th>
<th>Node Description</th>
<th>Queue Manager</th>
<th>Slots</th>
<th>Total memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACB</td>
<td>(1) 56-core 256G</td>
<td>Adam Dupuy</td>
<td>56</td>
<td>256</td>
</tr>
<tr>
<td>AIS</td>
<td>(1) 56-core 256G</td>
<td>Grant Brown</td>
<td>56</td>
<td>256</td>
</tr>
<tr>
<td>AML</td>
<td>(1) 56-core 256G</td>
<td>Aaron Miller</td>
<td>56</td>
<td>256</td>
</tr>
<tr>
<td>AML-HM</td>
<td>(1) 80-core 1.5T</td>
<td>Aaron Miller</td>
<td>80</td>
<td>1500.0</td>
</tr>
<tr>
<td>ANTH</td>
<td>(4) 56-core 128G</td>
<td>Andrew Kitchen</td>
<td>224</td>
<td>512</td>
</tr>
<tr>
<td>ARROMA</td>
<td>(8) 56-core 128G (1) 80-core 768G</td>
<td>Jun Wang</td>
<td>528</td>
<td>1792</td>
</tr>
<tr>
<td>ARROMA-80</td>
<td>(4) 80-core 192G</td>
<td>Jun Wang</td>
<td>320</td>
<td>768</td>
</tr>
<tr>
<td>ARROMA-Analysis</td>
<td>(1) 80-core 768G</td>
<td>Jun Wang</td>
<td>80</td>
<td>768</td>
</tr>
<tr>
<td>ARROMA-MAIA</td>
<td>(2) 80-core 192G (2) 80-core 384G</td>
<td>Jun Wang</td>
<td>320</td>
<td>1152</td>
</tr>
<tr>
<td>ARROMA-OPERATION</td>
<td>(1) 80-core 768G</td>
<td>Jun Wang</td>
<td>80</td>
<td>768</td>
</tr>
<tr>
<td>AS</td>
<td>(5) 56-core 256G</td>
<td>Katharine Corum</td>
<td>280</td>
<td>1280</td>
</tr>
<tr>
<td>AT</td>
<td>(1) 80-core 1.4T</td>
<td>Ashish Towari</td>
<td>80</td>
<td>1400.0</td>
</tr>
<tr>
<td>BH</td>
<td>(1) 56-core 512G</td>
<td>Bin He</td>
<td>56</td>
<td>512</td>
</tr>
<tr>
<td>BIGREDQ</td>
<td>(13) 56-core 256G</td>
<td>Sara Mason</td>
<td>728</td>
<td>3328</td>
</tr>
<tr>
<td>BIO-INSTR</td>
<td>(3) 56-core 256G</td>
<td>Brad Carson</td>
<td>168</td>
<td>768</td>
</tr>
<tr>
<td>BIOLOGY</td>
<td>(1) 56-core 256G</td>
<td>Matthew Brockman</td>
<td>56</td>
<td>256</td>
</tr>
<tr>
<td>BIOSTAT</td>
<td>(2) 56-core 128G</td>
<td>Patrick Breheny Grant Brown Yuan Huang Dan Sewell Brian Smith</td>
<td>112</td>
<td>256</td>
</tr>
<tr>
<td>BLAYES</td>
<td>(1) 56-core 512G</td>
<td>Sarvesh Srivastava</td>
<td>56</td>
<td>512</td>
</tr>
<tr>
<td>CBIG</td>
<td>(1) 64-core 192G w/ (1) TITAN V JHH Special Edition (1) 56-core 256G w/ (1) TITAN V</td>
<td>Mathews Jacob</td>
<td>120</td>
<td>448</td>
</tr>
<tr>
<td>CBIG-HM</td>
<td>(1) 56-core 512G w/ (2) Tesla P100-PCIE-16GB</td>
<td>Mathews Jacob</td>
<td>56</td>
<td>512</td>
</tr>
<tr>
<td>CCOM</td>
<td>(18) 56-core 512G 5 Running jobs per user</td>
<td>Boyd Knosp</td>
<td>3008</td>
<td>9216</td>
</tr>
<tr>
<td>CCOM-GPU</td>
<td>(2) 56-core 512G w/ (1) Tesla P100-PCIE-16GB</td>
<td>Boyd Knosp</td>
<td>112</td>
<td>1024</td>
</tr>
<tr>
<td>CGRER</td>
<td>(10) 56-core 128G (4) 80-core 192G</td>
<td>Jeremie Moen</td>
<td>880</td>
<td>2048</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>(3) 56-core 256G</td>
<td>Brad Carson</td>
<td>168</td>
<td>768</td>
</tr>
<tr>
<td>CLAS-INSTR</td>
<td>(2) 56-core 256G</td>
<td>Brad Carson</td>
<td>112</td>
<td>512</td>
</tr>
<tr>
<td>CLAS-INSTR-GPU</td>
<td>(1) 40-core 192G w/ (1) GeForce GTX 1080 Ti (1) 40-core 192G w/ (2) GeForce GTX 1080 Ti (One node with single, one node with two accelerators)</td>
<td>Brad Carson</td>
<td>80</td>
<td>384</td>
</tr>
<tr>
<td>CLL</td>
<td>(5) 56-core 128G</td>
<td>Mark Wilson Brian Miller</td>
<td>280</td>
<td>640</td>
</tr>
<tr>
<td>COB</td>
<td>(2) 56-core 256G</td>
<td>Brian Heil</td>
<td>112</td>
<td>512</td>
</tr>
<tr>
<td>Group</td>
<td>Cores</td>
<td>Memory</td>
<td>GPUs</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>COB-GPU</td>
<td>40</td>
<td>192G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>CODBCB</td>
<td>64</td>
<td>384G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>COE</td>
<td>56</td>
<td>256G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>COE-GPU</td>
<td>40</td>
<td>192G</td>
<td>GeForce GTX 1080 Ti</td>
<td></td>
</tr>
<tr>
<td>COVID19</td>
<td>80</td>
<td>384G</td>
<td>GeForce RTX 2080 Ti</td>
<td></td>
</tr>
<tr>
<td>DARROB</td>
<td>56</td>
<td>256G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EES</td>
<td>80</td>
<td>384G</td>
<td>Tesla V100S-PCIE-32GB</td>
<td></td>
</tr>
<tr>
<td>FERBIN</td>
<td>80</td>
<td>768G</td>
<td>GeForce RTX 2080 Ti</td>
<td></td>
</tr>
<tr>
<td>FFME</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFME-HM-GPU</td>
<td>56</td>
<td>128G</td>
<td>Tesla P100-PCIE-16GB</td>
<td></td>
</tr>
<tr>
<td>FLUIDSLAB</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOLLAND-LAB</td>
<td>80</td>
<td>384G</td>
<td>Tesla V100S-PCIE-32GB</td>
<td></td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td>56</td>
<td>128G</td>
<td>Tesla V100-PCIE-32GB</td>
<td></td>
</tr>
<tr>
<td>GV</td>
<td>56</td>
<td>256G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJ</td>
<td>56</td>
<td>128G</td>
<td>Tesla P100-PCIE-16GB</td>
<td></td>
</tr>
<tr>
<td>IFCA</td>
<td>56</td>
<td>256G</td>
<td>Tesla P100-PCIE-16GB</td>
<td></td>
</tr>
<tr>
<td>IIFG</td>
<td>56</td>
<td>256G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATICS</td>
<td>56</td>
<td>256G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFORMATICS-GPU</td>
<td>40</td>
<td>192G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>INFOTHONIC-HM-GPU</td>
<td>56</td>
<td>256G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>IIRC</td>
<td>64</td>
<td>768G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVR</td>
<td>56</td>
<td>256G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVR-GPU</td>
<td>56</td>
<td>256G</td>
<td>Tesla K80</td>
<td></td>
</tr>
<tr>
<td>IVR-VOLTA</td>
<td>56</td>
<td>256G</td>
<td>TITAN V</td>
<td></td>
</tr>
<tr>
<td>IWA</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JES</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JG</td>
<td>80</td>
<td>768G</td>
<td>GeForce RTX 2080 Ti</td>
<td></td>
</tr>
<tr>
<td>JM</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM-GPU</td>
<td>80</td>
<td>768G</td>
<td>Tesla V100-PCIE-32GB</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>56</td>
<td>256G</td>
<td>Tesla P100-PCIE-16GB</td>
<td></td>
</tr>
<tr>
<td>KA</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>56</td>
<td>128G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Users are restricted to no more than three running jobs in the COE queue.
The University of Iowa (UI) queues

A significant portion of the HPC cluster systems at UI were funded centrally. These nodes are put into queues named UI or prefixed with UI-.

- **UI** Default queue
- **UI-HM** request only for jobs that need more memory than can be met with the standard nodes.
- **UI-MPI** MPI jobs; request only for jobs that can take advantage of multiple nodes.
- **UI-GPU** Contains nodes with GPU accelerators; request only if job can use a GPU accelerator.
- **UI-DEVELOP** Meant for small, short running job prototypes and debugging.

These queues are available to everyone who has an account on an HPC system. Since that is a fairly large user base there are limits placed on these shared queues. Also note that there is a limit of 50000 active (running and pending) jobs per user on the system.
The all.q queue

This queue encompasses all of the nodes and contains all of the available job slots. It is available to everyone with an account and there are no running job limits. However, it is a low priority queue instance on the same nodes as the higher priority investor and UI queue instances. The all.q queue is subordinate to these other queues and jobs running in it will give up the nodes they are running on when jobs in the high priority queues need them. The term we use for this is "job eviction". Jobs running in the all.q queue are the only ones subject to this.

<table>
<thead>
<tr>
<th>Queue</th>
<th>Node Description</th>
<th>Slots</th>
<th>Total Memory (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>all.q</td>
<td>(168) 56-core 256G</td>
<td>30864</td>
<td>152224.0</td>
</tr>
<tr>
<td></td>
<td>(115) 56-core 128G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(60) 56-core 512G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(54) 80-core 384G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(35) 80-core 192G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20) 80-core 768G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14) 80-core 96G w/ (4) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) 80-core 384G w/ (4) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) 56-core 512G w/ (1) Tesla P100-PCIE-16GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) 80-core 192G w/ (1) Tesla V100S-PCIE-32GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) 40-core 96G w/ (4) GeForce GTX 1080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) 80-core 1.5T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) 40-core 192G w/ (4) TITAN V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) 64-core 768G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) 56-core 256G w/ (1) Tesla P100-PCIE-16GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) 56-core 256G w/ (2) Tesla P100-PCIE-16GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) 80-core 192G w/ (8) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) 56-core 512G w/ (4) TITAN V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) 40-core 192G w/ (4) GeForce GTX 1080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) 56-core 256G w/ (1) TITAN V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 56-core 512G w/ (2) Tesla K80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 56-core 512G w/ (2) Tesla P100-PCIE-16GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 64-core 384G w/ (4) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 56-core 256G w/ (2) Tesla V100-PCIE-32GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 64-core 768G w/ (2) Tesla V100-PCIE-32GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 56-core 128G w/ (2) Tesla V100-PCIE-32GB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 56-core 128G w/ (1) Tesla P40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 80-core 1.5T w/ (8) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 80-core 1.5T w/ (4) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 80-core 1.5T w/ (2) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 80-core 1.5T w/ (1) GeForce RTX 2080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 80-core 1.5T w/ (1) Quadro RTX 8000(nvlink)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 80-core 1.4T w/ (4) TITAN V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 384G w/ (4) GeForce GTX 1080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 384G w/ (3) GeForce GTX 1080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 384G w/ (1) TITAN V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 192G w/ (1) TITAN V JHH Special Edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 192G w/ (1) GeForce GTX 1080 Ti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 64-core 192G w/ (2) TITAN V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the number of slots available in the UI queue can vary depending on whether anyone has purchased a reservation of nodes. The UI queue is the default queue and will be used if no queue is specified. This queue is available to everyone who has an account on a UI HPC cluster system.

Please use the UI-DEVELOP queue for testing new jobs at a smaller scale before committing many nodes to your job.
In addition to the above, there are some nodes that are not part of any investor queue. These are only available in the all.q queue and are used for node rentals and future purchases. The number of nodes for this purpose varies.

GPU selection policy

For queues that consist of all nodes containing a GPU, and are split out into a QUEUE-GPU queue, the policy is to set the \texttt{ngpus} resource to 1 if not explicitly set. For other queues that contain GPU nodes the policy has been set by the queue owner to either request a GPU by default or not.